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Long waves in a relativistic pair plasma in a strong magnetic field
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The properties of low-frequency waves in a one-dimensional, relativistic electron-positron plasma in a
strong external magnetic field typical of pulsar magnetospheres are discussed. Approximate dispersion rela-
tions are derived for a broad class of distribution functions that have an intrinsically relativistic spread in
energies. The effects of the non-neutrality, associated with rotation, and of the relative motion of the plasma
species are discussed briefly. In the plasma rest frame only three wave modes need be considered. The
magnetosonic (t) mode becomes firehose unstable as the magnetic field weakens, and this occurs in the wind
zone of the pulsar. The Alfve´n (A) mode exists only below a maximum frequency, and is weakly damped only
for sufficiently strong magnetic fields. The Langmuir-O mode is approximately longitudinal near its cutoff
frequency, and approximately transverse at high frequencies. We argue that the emission zone is within;102

pulsar radii, and that onlyt, A, and Langmuir waves may participate in the formation of the observed radio
spectrum.@S1063-651X~98!07103-7#

PACS number~s!: 52.60.1h, 52.35.2g, 97.60.Gb
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I. INTRODUCTION

Relativistic plasma plays an important role in a number
astrophysical objects such as active galactic nuclei, bl
hole magnetospheres, the primordial Universe, relativi
jets, cosmic rays, and others@1#. In particular, relativistic
pair ~electron-positron! plasma in a strong magnetic fiel
plays a central role in the physics of pulsar magnetosph
and winds @2–4#. The observed radio emission (v
;109– 1011 s21) from pulsars, which are magnetized ne
tron stars, is generated in a relativistic pair plasma and m
propagate through such plasma as it escapes@2,4#. The pair
plasma is created in a two-stage process: primary parti
are accelerated by an electric field parallel to the magn
field near the poles~where the typical magnetic field i
;1012 G! up to extremely high energies, and these produc
secondary, denser pair plasma via an avalanche or cas
process@5#. The number density,Np , of the secondary pai
plasma exceeds the Goldreich-Julian densityNGJ ~which is
required to maintain corotation! by the so-called multiplicity
factor M5Np /NGJ;102– 106 @2,4,5#. The pair plasma is in-
trinsically highly relativistic, its flow Lorentz factorgp being
of the same order of magnitude as the typical spread~e.g.,
root mean square! Lorentz factor ^g&, with gp;^g&;
10 – 103 @4#.

The radio emission mechanism for pulsars is not
equately understood@4,6#. A plausible scenario is the excita
tion of waves due to a resonant kinetic plasma instabi
followed by nonlinear interaction between the waves to p
duce the spectrum of the escaping radiation. One versio
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this process is that suggested by one of us@7–9# and other
versions have been reviewed elsewhere@4,6#. Whatever the
details of the emission mechanism, the properties of the l
frequency waves in relativistic pair plasma in the puls
magnetosphere are of central importance for understan
the underlying processes in the formation of the radio sp
trum.

Waves in pulsar plasmas have been studied extensi
over the past two decades. Early studies mainly concentr
on the relativistic plasma flow, assuming cold or only mild
relativistic distribution of electrons and positrons in th
plasma rest frame~see, e.g., Ref.@10# and references
therein!. Kinetic analysis of the highly relativistic plasm
concentrated mainly on longitudinal waves propagat
along the magnetic field~see, e.g.,@11#!. A general expres-
sion for the dielectric tensor, except for the neglect of gy
tropic factors~see below!, was derived by one of us@12# for
oblique low-frequency waves in a plasma which is on
dimensional in the sense that the particles have motion o
along the magnetic field lines. The dispersion relation for
oblique electromagnetic waves was obtained and linear
larization explained. Low-frequency waves were studied
detail by Arons and Barnard@13#, where many of the results
of the previous studies were rederived and generalized.
specific cases considered in detail in@13# were the cold
plasma and waterbag distributions. These distributions
not sufficiently general to include all the possibly importa
effects in the application to pulsar plasmas. More recently
relativistic thermal distribution was discussed by Polyak
@14#, but this is also insufficiently general to contain all th
possibly important features. In all these cases, the plasm
assumed to be one-dimensional, which is well justified
plasma in the superstrong pulsar magnetic fields. The as
3399 © 1998 The American Physical Society
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physical objective of such investigations is to understand
radio emission mechanism for pulsars, but neither the em
sion mechanism nor even the location of the emission reg
has been clearly identified~see, e.g., Ref.@15#!.

The objective of the present paper is to determine
general properties~dispersion relations and polarization! of
the low-frequency waves in pulsar plasmas making only
most general assumptions on the form of the distribut
function. The plasma is assumed locally homogeneous,
although we examine the effects of the nonzero charge
current density on the wave properties, we argue that t
can be ignored. The streaming motion of the plasma is
moved by carrying out the analysis in the plasma rest fra
where the intrinsic spread in particle energies is assum
highly relativistic. Our aim is to derive compact expressio
for the dispersion relations for the low-frequency mod
which apply in the regions of the magnetosphere where
observed radio emission is plausibly generated.

The paper is organized as follows. In Sec. II we disc
the plasma parameters used throughout the paper. In Se
we present an efficient method for the treatment of linear
nonlinear low-frequency waves, based on the direct exp
sion of the Vlasov equation in an inverse gyrofrequen
power series, and use it in Sec. IV to derive the dielec
tensor for an arbitrary one-dimensional distribution functio
In Sec. V we analyze the dispersion relation for differe
modes and establish the relation between the location of
region where the waves are considered~emission region! and
mode features. In Sec. VI we summarize the results and
cuss qualitative implications for the interpretation of puls
radio emission.

II. PLASMA PARAMETERS

The pulsar plasma parameters in the source region
model dependent. There are different models for the gen
tion of the secondary pairs, for the location of the radio em
sion region, and there are intrinsic variations from one pu
to another, all of which introduce uncertainties into the e
mates. We choose what we consider to be the most plau
parameters, but note that there is necessarily an uncert
of several orders of magnitude in some estimates, most
tably of the plasma density.

A standard model of the polar cap pair cascade imp
that the pulsar rest frame density of the pair plasma isNp
'MNGJ where NGJ'B0 /Pec is the Goldreich-Julian den
sity, andM is the multiplicity factor. For a pulsar with the
polar magnetic fieldB0'1012 G and periodP51 s, one
finds NGJ'1011 cm23. The multiplicity factor is uncertain
with estimates in the range 102– 106. We adoptM5103 for
numerical estimates. The resulting plasma density isNp
'1014 cm23. This plasma is highly relativistic, flowing with
a mean Lorentz factor of aboutgp'103 and having a spread
in Lorentz factors of about̂g&'102 ~for the actual defini-
tion of this parameter see below!. Thus, the plasma res
frame density near the pulsar surface isNr5Np /gp
'1011 cm23.

The dipole magnetic field varies in the magnetosphere
B5B0(R0 /R)23, where R0'106 cm is the radius of the
neutron star. In most models of the pulsar radio emiss
@15# the emission zone is believed to be well inside the lig
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cylinder RL5cP/2p, beyond which corotation must brea
down. For a pulsar with the periodP51 s, the light cylinder
is at the radiusRL'1010 cm'104R0 . The plasma density
varies asNp}R23 ~as the magnetic field! in the region of
interest (R&RL), wheregp and ^g& are independent ofR.

The frequencies of interest are those in the observed r
range of 109– 1011 s21, which translates into v
;106– 108 s21 in the plasma rest frame forgp'103. The
gyrofrequencyV5eB/mc and the plasma frequency, de
fined here asvp5(4pNre

2/m)1/2 without any Lorentz fac-
tor, vary from V'231019 s21 and vp'231010 s21 near
the polar cap, toV'23107 s21 andvp'23104 s21 at the
light cylinder. If the emission zone is near 0.01RL @15#, the
corresponding frequencies are approximatelyV'2
31013 s21 and vp'23107 s21. For more rapidly rotating
pulsars these frequencies are higher.

III. GENERAL FORMALISM

The approach to the analysis of low-frequency long wa
was described in detail in Ref.@16#. Here we briefly outline
its modification for the case of relativistic plasma.

The ultrarelativistic pair plasma, typical for pulsar ma
netospheres, should be described by the relativistic Vla
equation

]

]t
f s1v

]

]r
f s1

qs

ms
~E1v3B!

]

]u
f s50, ~1!

for each speciess ~electrons and positrons in our case!, with
u5p/m, v5u/g, g2511u2, and where we use units with
c51. The magnetic fieldB includes the constant externa
magnetic field chosen so thatB05(0,0,B0). Equation ~1!
applies in an arbitrary inertial frame, and we use it in t
plasma rest frame.

In cylindrical coordinates withu5(u' cosf,u' sinf,uz),
the distribution function may be expressed as a Fourier
ries:

f s5 (
n52`

n5`

f s,n~u' ,uz!exp~2 inf!. ~2!

Only the componentsf s,0 and f s,s , s561 appear in the
following expression for the current density:

j z5(
s

qsE vzf s,0u'du'duz , ~3!

j x5(
s

1
2 (

s
qsE v' f s,su'du'duz , ~4!

j y5(
s

1
2 (

s
isqsE v' f s,su'du'duz , ~5!

and whereSs denotes summation over species. The dep
dence ons is omitted, but remains implicit, in the following
equations.

Equation~1! is equivalent to the following infinite chain

~Ln1 inṼ! f n1 (
s561

Gs
n2s f n2s50, ~6!
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where the operatorsLn andGs
n are defined by

Ln5
]

]t
1vz

]

]z
1aEz

]

]uz
inag21Bz , ~7!

Gs
n5

v'

2
¹s1

a

2
~Esdsn1 isBsr sn!, ~8!

dsn5
]

]u'

2
sn

u'

, nsn5vzdsn2v'], ~9!

wherea5q/m, V5qB0 /m, Ṽ5V/g, Es5Ex1 isEy , Bs

5Bx1 isBy , and s561, and with ¹s5]/]x1 is]/]y,
and][(]/]uz).

In the general case, the infinite chain~6! is no simpler to
solve than the original Vlasov equation~1!. However, in the
low-frequency, long-wavelength regime, there is a small
rameter j;vg/V;kg/V!1 in which one may expand
This expansion is described in detail in Ref.@16#. It is done
by simple substitutionV→V/j ~where nowj is used as a
formal smallness parameter, which is set equal to unity in
end!, so that Eq.~6! for unu>1 may be written

f n5
j

inṼ
F2Lnf n2(

s
Gs

n2s f n2sG . ~10!

Since the equilibrium distribution is gyrotropic~f n→0 for
unu>1, if E→0, B→0, and“→0!, the distribution function
can be represented as a following power series:

f n5 (
m5unu

`

jmf n
~m! , ~11!

where the lower summation limit is determined by taki
into account Eq.~10!. For our present purposes it is sufficie
to restrict ourselves to the currents of order not higher t
j2. Since f n;O(j unu), the chain~6! can be reduced to th
following equations forf 0 and f s , s561:

f s52
j

isṼ
Gs

0 f 01
j2

isṼ
Ls

1

isṼ
Gs

0 f 0 , ~12!

L0f 05(
s

G2s
s

j

isṼ
S 12

jLs

isṼ
D Gs

0 f 0 . ~13!

These equations form a closed set for plasma in a str
external magnetic field. A perturbative solution gives

L0f 0
~0!50, ~14!

L0f 0
~1!5(

s
G2s

s
1

isṼ
Gs

0 f 0
~0! , ~15!

L0f 0
~2!5(

s
G2s

s
1

isṼ
Gs

0 f 0
~1!

2(
s

G2s
s

1

isṼ
Ls

1

isṼ
Gs

0 f 0
~0! . ~16!
-

e

n

g

Of course, the inverse operatorL0
21 should be properly de-

fined to solve Eqs.~14!–~16!.
The expansion procedure simplifies in the weak turb

lence limit in which one can expand in a further small p
rameterh;E/B0!1. As we are concerned with the linea
response of the plasma we need retain only the zeroth
linear terms in this expansion. This leads to the expansio

f 05F0~u' ,uz!1h (
n50

2

jnf 0
~n! , ~17!

f s5h (
n51

2

jnf s
~n! . ~18!

It is convenient to switch to Fourier space, assuming that
perturbations}exp@i(k•r2vt)#, with k5(k',0,kz). Omit-
ting the lengthy algebra we find

f 05F0~u' ,uz!2
ak'v'

2Ṽz
Eym0F01

iak'v'

2Ṽ2v
Exm0F0

1
ik'

2 v'vza

2Ṽ2z
m0F0Ez1

ik'v'a

2Ṽ2
m0F0Ex , ~19!

f s52
a

2isṼ
@Es1Ez~k'vz /z!#m0F01

iak'
2 v'

2

4isṼ2z
Eym0F0

1
iaz

2Ṽ2
@Es1Ez~k'vz /z!#m0F0 , ~20!

where we use the relationB5k3E/v and the notationz
5v2kzvz andm05@z(]/]u')1kzv'(]/]uz)#/v. In the fi-
nal expressions~19! and~20! the formal smallness paramete
j is not necessary already and it is set to unity.

IV. GENERAL DIELECTRIC TENSOR
AND DISPERSION EQUATION

The distribution functionsf 0 and f s found from Eqs.~19!
and ~20! are used in Eqs.~3!–~5! to determine the conduc
tivity tensor by writing j i5Ki j Ej . The dielectric tensor then
follows from

e i j 5d i j 1
4p i

v
Ki j . ~21!

We obtain

ezz511(
s

vps
2

v E vzu'z21]Fs,0du'duz

2(
s

vps
2 k'

2

2vVs
2 E u'

2 uz
2g21z21m0Fs,0du'duz ,

~22!

eyz52ezy5 i(
s

vps
2 k'

2vVs
E uzu'

2 z21m0Fs,0du'duz ,

~23!
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exz5ezx52(
s

vps
2 k'

2vVs
2 E uzu'

2 m0Fs,0du'duz , ~24!

exy52eyx5 i(
s

vps
2

2vVs
E u'

2 m0F ,0du'duz , ~25!

exx512(
s

vps
2

2vVs
2 E zgu'

2 m0Fs,0du'duz , ~26!

eyy5exx1(
s

vps
2 k'

2

4vVs
2 E u'

4 g21z21m0Fs,0du'duz ,

~27!

where we restore subscripts561 denoting summation ove
species~s51 for positrons ands521 for electrons!. Here
vps

2 54pe2Nrs /m andVs5seB0 /m, where we take into ac
countq152q25e, m15m25m. We now incorporate the
plasma rest frame number densityNrs in the plasma fre-
quencyvps and normalize the distribution function as fo
lows:

E Fs,0u'du'duz51. ~28!

The dispersion equation for the waves is

detin2d i j 2ninj2e i j i50, ~29!

where n5unu, with n5k/v the refractive index, vp
2

54pq2Nr /m.
In Eqs. ~22!–~27! the distribution functionsFs,0(u' ,uz)

are arbitrary. The above expressions can be partially i
grated to give

ezz511(
s

vps
2

v
^uzg

21z21]&s1(
s

vps
2 k'

2

v2Vs
2 ^uz

2g21&s

2(
s

vps
2 k'

2

2v2Vs
2 ^uz

2u'
2 g23&s

2(
s

vps
2 k'

2 kz

2v2Vs
2 ^uz

2u'
2 g22z21]&s , ~30!

eyz5 i(
s

vps
2 k'

2v2Vs
@22v^uz&s1kz^uzu'

2 g21z21]&s#,

~31!

exz52(
s

vps
2 k'

2v2Vs
2 @22v^uz&s1kz^~2uz

22u'
2 !g21&s#,

~32!

exy5 i(
s

vps
2

2v2Vs
@22v1kz^uzg

21&s#, ~33!

exx512(
s

vps
2

2v2Vs
2 @22v2^g&s2v2^u'

2 g21&s

14vkz^uz&s2kz
2^~2uz

22u'
2 !g21&s#, ~34!
e-

eyy5exx1(
s

vps
2 k'

2

4v2Vs
2 @24^u'

2 g21&s1^u'
4 g23&s

1kz^u'
4 g22z21]&s#, ~35!

where

^•••&s[E u'du'duz~••• !Fs,0 . ~36!

In Eqs.~30!–~35!, Fs,0(u' ,uz) remain arbitrary, and the de
rived general dielectric tensor describes the linear respo
of both anisotropic and isotropic plasmas. The distribut
function of the electron-positron plasma in the pulsar m
netosphere is assumed one-dimensionalFs,0}d(u')/u' , due
to the perpendicular energy of relativistic electrons and p
itrons being radiated away. We assumeFs,0

5F̃s,0(uz)d(u')/u' with normalization *F̃s,0duz51. For
this one-dimensional distribution one has

ezz5e i512(
s

vps
2

v2 Ws~ni!1(
s

vps
2 n'

2

V2 ^uz
2g21&s ,

~37!

eyz52 iP52 i(
s

vps
2 n'

vVs
^uz&s , ~38!

exz5Q5(
s

vps
2 n'

Vs
2 ~^uz&s2ni^uz

2g21&s!, ~39!

exy52 ig52 i(
s

vps
2

vVs
~12ni^uzg

21&s!, ~40!

exx5eyy5e'511(
s

vps
2

Vs
2 ~^g&s22ni^uz&s

1ni
2^uz

2g21&s!, ~41!

where we introduce n'5k' /v5n sinu, ni5kz /v
5n cosu. The dispersion functionsWs(ni) are defined by
~for positivev!

Ws~ni!52
1

ni
E

2`

` 1

12nivz1 i t

dF̃s,0

duz
duz , ~42!

where i t (t→10) defines the contour of integration. Th
functionsWs(ni) are defined so that in the cold plasmaWs
51. Alternative forms are

Ws~ni!52
1

ni
FPE

2`

` 1

12niv
dF̃s,0

duz
duz

2 ip
g r

3

uniu
dF̃s,0

duz uuz5ur

G , ~43!

Ws~ni!52
1

ni
FPE

21

1 1

12nivz

dF̃s,0

dvz
dvz

2 ip
1

uniu
dF̃s,0

dvz uvz5vr

G , ~44!

with v r51/ni , g r5(12v r
2)21/2, ur5g rv r , andP denotes

the principal value integral.
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The averaging procedure~36! becomes

^•••&sE ~••• !F̃s,0duz . ~45!

The plasma rest frame is defined such that the net flow sp
is zero. In the following we argue that the relative flow b
tween the electrons and positrons is unimportant in determ
ing the wave properties, and hence we effectively assu
^uz&25^uz&150 in the rest frame, where the subscripts d
note electrons and positrons. However,^uz&50 does not
guarantee that̂uzg

21& vanishes, except where the distrib
tion function possesses a specific symmetry property. I
likely that the pulsar plasma distribution is noticeably asy
metric with respect to the outward and inward directio
because of the way it is generated in a pair cascade.

V. WAVE PROPERTIES

In this section we derive the properties of the waves
specific distribution functions, using these to infer appro
mate dispersion relations for a wider class of distribution

A. Neglect of the gyrotropic terms

We start by arguing that the gyrotropic termseyz andexy
may be neglected in the wave analysis. These terms are
zero due to nonzero charge densityr;eNGJ and a parallel
current densityJ;eNGJ associated with the rotation of th
magnetosphere@13#, and each is smaller by a factor}uN2

2N1u/N;NGJ/N;1023!1 than the nongyrotropic terms
Only the square of the gyrotropic terms enter the dispers
relation ~29! for oblique propagation, and their effect wou
be significant, compared with the other terms in the disp
sion relation, forv&vp(NGJ/N)/^g&1/2. Near the polar cap
this inequality givesv&106 s21. The plasma density de
creases}R23 with increasing radiusR, so that the frequen
cies where the gyrotropic terms are significant decrease
R. Assuming the source region to be atR.10R0 implies that
the gyrotropic terms would be significant only atv
&103 s21, corresponding to an observational frequen
;103g r /2p'0.2 MHz, which is well below the radio fre
quency range of interest. It follows that the gyrotropic ter
are negligible in the dispersion relations. The gyrotro
terms imply an ellipticity of the polarization}NGJ/N, which
is also negligible except in the limiting case of paral
propagation.

The case of parallel propagation requires separate con
eration. The dispersion relation in the appropriate appro
mation becomes~retaining only the largest term!

n2516
vp

2

vV

uN22N1u
N

, ~46!

with uN22N1u;NGJ. The right-hand side of Eq.~46! is
insensitive toR so it suffices to estimate it near the puls
surface. With the parameters of Sec. II one finds that
largest correction to the refractive index in the radio rang
&1028. This correction is not significant here.

In the following we neglect effects related to the nonze
charge and current densities, setF̃1,05F̃2,0 , and hence ne-
ed
-
n-
e

-

is
-
,

r
-

n-

n

r-

th

y

s
c

l

id-
i-

e
is

o

glect the gyrotropic terms. However, the gyrotropic term
must become important for sufficiently low-frequenc
waves, specifically for waves for which the ratio of the rot
tion frequency of the star to the wave frequency is not n
ligible.

B. The dispersion equation

The neglect of the gyrotropic terms impliesP5g50 in
Eqs.~38! and~40!, and for the same reason the terms invo
ing ^vz&s in Eq. ~39! are neglected. We may also omit su
script s, using notationvp15vp2[vp , V152V2[V,
and W1(ni)5W2(ni)[W(ni). The dispersion equation
then factorizes into two independent dispersion relations
linearly polarized waves:

n25e' , EyÞ0, ~47!

~ni
22e'!~n'

2 2e i!5~n'ni1Q!2, Ey50, ~48!

where

e i512
2vp

2

v2 W~ni!1n'
2 Dl, ~49!

e'511D~^g&1ni
2l!, ~50!

Q52Dn'nil, ~51!

D5
2vp

2

V2 , l5^uz
2g2&. ~52!

Equation ~47! corresponds to a strictly transverse wa
mode, usually called the magnetosonic (t) mode, which
name is used here. This mode was called theX mode in@13#.
Equation ~48! corresponds to waves which are neith
strictly longitudinal nor strictly transverse in general, and
includes both the Langmuir and Alfve´n modes as limiting
cases. We discuss the waves described by Eqs.~47! and~48!
separately.

C. Magnetosonic„t… waves

The dispersion relation~47! for t waves may be written in
the form ~cf. @9,13#!

v t
25k2vA

2~12Dl cos2 u!, ~53!

wherevA51/(11D^g&)1/2 is the relativistic Alfvén speed as
defined by@17#.

The t mode is subluminous (v,k), and this is a neces
sary condition for a resonant~Cherenkov! interaction with
particles to be possible. Nevertheless, no resonant interac
is possible because the waves haveEz50, and the current
associated with a particle is strictly along thez axis in the
one-dimensional case. A resonant interaction becomes
sible in principle when either the gyrotropic terms are
cluded, as these lead to a nonzero longitudinal componen
the polarization, or when the particles are not confined
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their lowest Landau orbital. In the first case the absorpt
coefficient should be proportional toEz /Ey}DNGJ/Np , and
hence is very weak. The second case requires that ther
some mechanism to excite the particles out of their low
Landau orbital, and the only effective mechanism is a re
nant gyromagnetic interaction, which requires waves
much higher frequency than are of interest here. Such e
tation through the anomalous Doppler resonance was
cussed in@18#. Provided our assumption that the plasma
one dimensional remains valid, absorption~positive or nega-
tive! due to gyromagnetic interactions is not possible.

Equation~53! shows that the plasma becomes intrinsica
~aperiodically! unstable whenDl.1. This is a special cas
of the firehose instability, which may occur in a hot anis
tropic plasma@17#. Well within the light cylinder in a pulsar
magnetosphere one hasD}R3, and then the firehose insta
bility develops for

R*R0S V0
2

vp0
2 ^g& D

1/3

, ~54!

where the subscript 0 refers to the values near the pu
surface. It is usually assumed that once the firehose inst
ity develops, the distribution function isotropizes due to qu
silinear interactions with the unstable waves. In principle,
effects of the quantization of the Landau levels needs to
taken into account here, because the conventional treatm
in terms of a diffusion in pitch angle applies only in th
nonquantum limit. However, for typical plasma paramet
the firehose instability develops well beyond the light cyl
der, in the wind zone, whereD}R22. Hence, it is not di-
rectly relevant to the present discussion.

The correction to the refractive index~and phase velocity!
}D^g& is small for parameters of relevance here. The c
rection is only relevant if it is larger than other correction
in particular, that due to vacuum polarization~e.g., Ref.
@13#!. The vacuum polarization gives a correctio
}(a f /45p)(B/Bc)

2, where a f51/137 is the fine structure

FIG. 1. The waterbag, hard bell, and soft bell distributions w
gm5100.
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constant, and the critical magnetic field isBc54.4
31013 G. Near the pulsar surface this correction is;1027

and drops to;10213 at R510R0 , being proportional to
R26. On the other hand, the plasma induced correction
D^g&;10216 near the pulsar surface, and increases asR3

with the distance, reachingD^g&;1028 at R5103R0 . These
numbers show that vacuum polarization effects are ne
gible and the infinite magnetic field approximation (D50) is
appropriate forR&103R0 . This conclusion also applies t
the mixed~Alfvén-Langmuir! mode. Nevertheless, for com
pleteness, we retainDÞ0.

D. Alfvén-Langmuir mode

The second dispersion relation~48! is more complicated.
The identification of the modes is made by considering
case of parallel propagation. Forn'50, Eq. ~48! factorizes
into the dispersion relationn25e' for the parallel Alfvén
mode ~which is degenerate with the parallelt wave! and
e i50 for the parallel Langmuir wave@9,11#. On including a
small obliquity, the relevant solutions of Eq.~48! are found
to map continuously onto these parallel modes as the ob
uity reduces to zero~in the long-wavelength limitk→0!, and
hence the classification into Alfve´n and Langmuir waves re
mains well defined. However, the ‘‘Langmuir’’ mode doe
not necessarily remain even approximately longitudi
away from parallel propagation. The Langmuir mo
evolves into a transverse electromagnetic mode, identifie
the O mode by@13#. We also note that because all solutio
of Eq. ~48! have EzÞ0, the Cherenkov resonance,v
5kznz , allows Landau damping~or growth! for sublumi-
nous waves, where ‘‘subluminous’’ meansni5kz /v.1.

The existing nomenclature for these modes can be con
ing. Our nomenclature is to refer to the mode which is d
generate with thet mode for parallel propagation as th
Alfvén ~A! mode. TheA mode has a parallel phase velo
ity ( 51/ni) that is subluminous (ni.1). The mode with a
cutoff frequency has a parallel phase velocity that is sup
luminous, and is called the Langmuir-O (L-O) mode. The

FIG. 2. Superluminous Langmuir-O mode for the three distri-
butions. For givenni , the frequency is the lowest for the waterba
distribution and highest for the soft bell.
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L-O mode is referred to as the Langmuir mode only in t
regime where the waves are approximately longitudinal.

We write Eq.~48! in the form

v2

2vp
2 5

ni
22~11d1!

ni
22~11d2!cos2 u

W~ni!cos2 u, ~55!

where we retain first order terms inD in the small corrections
d15D(^g&1l) and d25D(^g&cos2u1l). The form ~55!
contains the parallelA mode as a limiting case in which bot
the numerator and denominator vanish. To understand
behavior of theA and L-O modes in the general case, on
needs to consider the signs of the factorsni

22(11d1), ni
2

2(11d2)cos2u, and W(ni). The plasma is transparent t
one of these modes when@ni

22(11d1)#@ni
22(1

1d2)cos2u#W(ni).0. SinceW(ni,1).0, the nondamping
L-O mode always exists for 0<ni

2,(11d2)cos2u ~provided
sin2u.d2!. The Langmuir end of this mode starts at cuto
ni50, v5vpA2^g23&. The O-mode end is nondispersiv
with the dispersion relationv5kA11d2.

The A-mode features depend on the details of the beh
ior of W(ni). To investigate this mode we first consider se
eral specific distributions for whichW(ni) can be found ana
lytically.

E. Specific distribution functions

We consider several simple choices of distributions. F
simplicity, only symmetric distributionsF̃0(2uz)5F̃0(uz)
are investigated, and~with one exception! the distributions
are assumed to have a high energy cutoff atuz5um , with
F̃0(uz.um)50. The distributions discussed in detail are t
waterbag, hard bell, and soft bell distributions illustrated
Fig. 1. The different shapes of the distribution functions,
given um , result in significantly different wave propertie
These properties are illustrated in Figs. 2–5, which are
cussed in detail below. Throughout this section we use
notationgm5A11um

2 , ym5um /gm .

1. ‘‘Waterbag’’ distribution

First, consider the waterbag distribution~cf. Ref. @13#!,
which we take in the formF̃05(1/2um)H(um

2 2uz
2), where

H(x) is the Heavyside function,H(x)51 for x.0, and
H(x)50 otherwise. The dispersion function~44! becomes

W~ni!5
1

gm~12ni
2vm

2 !
, ~56!

and Eq.~55! becomes

v2

2vp
2 52

cos2 u

gmvm
2

ni
22~11d1!

@ni
22~11d2!cos2 u#~ni

221/vm
2 !

.

~57!

The A mode depends on the values ofni
2 corresponding to

the zeros~at ni
2511d1! and poles@at ni

25(11d2)cos2u and
ni

251/vm
2 # of the right-hand side of Eq.~57! @note that (1

1d2)cos2u,11d1#.
he

v-
-

r

r

s-
e

a. Case 1.(11d2)cos2u,11d1,1/vm
2 . The L-O mode

requires 0,ni
2,(11d2)cos2u. The cutoff frequency isv

→vp&/vm and the mode is purely longitudinal~Langmuir
mode! when ni→0. For v→` the L-O mode becomes
transverse~O mode! when ni

2→(11d2)cos2u,1. The A
mode has parallel refractive index in the range fromni

251
1d1 ~wherev→0! to ni

2→1/vm
2 ~wherev→`!. This mode

is transverse in the whole frequency range. Sincevm,1 this
is the only possible case in the infinite magnetic field lim
whered15d250.

b. Case 2.(11d2)cos2u,1/vm
2 ,11d1 . The only differ-

ence from case 1 is that the refractive index for theA mode
decreases now from (11d1)1/2 to 1/vm with increasing fre-
quency.

c. Case 3.1/vm
2 ,(11d2)cos2u,11d1. This order is pos-

sible only for (11d2)cos2u.1, that is, in the quasiparallel
regime. TheL-O mode becomes electromagnetic~O mode!
with ni→1/vm for v→`. The A mode has (11d2)cos2u
,ni

2,11d1.

2. ‘‘Hard bell’’ distribution

The waterbag distribution hasdF̃0 /duz50 everywhere
except at the end points, where it is infinite. This preclud
damping due to the Cherenkov resonance. In order to stu
damping it is necessary to consider a distribution wi
dF̃0 /duzÞ0. Here we consider the hard bell distribution

F̃05
3gm

2

4um
3

vm
2 2vz

2

12vz
2 H~vm

2 2vz
2!

5
3

4um
3 ~um

2 2uz
2!H~um

2 2uz
2!. ~58!

FIG. 3. Same as Fig. 2 but forv and a function ofk. The mode
starts as the longitudinal Langmuir mode atk50 and becomes the
transverseO mode asv approachesk.
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FIG. 4. Frequency~solid line! and damping rate~dash-dotted line! for the subluminousA mode in the rangeni.1. For given 1,ni

,1/vm the frequency is highest for the waterbag and lowest for the soft bell. There is a singularity (v→`) for the waterbag and the har
bell cases atni51/vm . In the soft bell case there is no such singularity. In both hard bell and soft bell cases the wave dampn
.1/vm .
th

e

tiv
(1

d

s

of

ag
w-
The dispersion function~44! becomes

W~ni!5
3

2um
3 ~ni

221!2 Fni lnUnivm11

nivm21U2umgm~ni
221!

2
ni

211

2
lnU11vm

12vm
UG

2 i
3pni

2um
2 ~ni

221!2 H~nivm21!. ~59!

This function has a logarithmic singularity,W→` at ni

51/vm , but does not change sign there, in contrast with
waterbag case. The sign change occurs at someni51/v*
.1/vm ~the exact value of which is of no importance her!,
so that the plasma is nontransparent for waves withni

.1/v* . The imaginary part ofW(ni) is nonzero for allni

.1/vm . The mode behavior again depends on the rela
positions of the zeros and the singularities, with
1d2)cos2u,11d1, 1/vm

2 ,1/v
*
2 . We consider two cases.

a. Case 1.(11d2)cos2u,11d1,1/vm
2 ,1/v

*
2 . The most

important new feature is the appearance of a new mo
whose parallel refractive index is in the range 1/vm,ni

,1/v* with ni→1/vm for v→` and ni→1/v* for v→0.
We refer to this as the sub-i mode. The damping rate for thi
mode is

G

v
5

Im W

2 ReW
52

3pni

4um
2 ~ni

221!2 Re W
, ~60!

which is large.
b. Case 2. (11d2)cos2u,1/vm

2 ,11d1,1/v
*
2 . In this

case the additional sub-i mode exists for 11d1,ni
2,1/v2 ,
*

e

e

e,

and tends to low frequencies (v→0) at both ends of the
range. It is strongly damped everywhere, and hence is
little practical interest.

3. ‘‘Soft bell’’ distribution

The waterbag distribution is discontinuous atvz5vm ,
and while the hard bell distribution is continuous atvz

FIG. 5. Dispersion relation for subluminousA mode in the non-
damping range 1,ni,1/vm . The existence of a maximum fre-
quency for the soft bell case~heavy line! is apparent. The thin line
extending beyond the soft bell cutoff corresponds to the waterb
and hard bell cases, which are nondistinguishable in the lo
frequency range and do not have an upper frequency limit.
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5vm, it has a discontinuous derivative there. The new sui

mode that we identify for a hard bell distribution exists on
nearni51/vm , and may well be associated with the disco
tinuous derivative there. To explore this point, we conside
soft bell distribution, which is continuous with a continuo
derivative atvz5vm :

F̃05
15gm

4

16um
5 Fvm

2 2vz
2

12vz
2 G2

H~vm
2 2vz

2!

5
15

16um
5 ~um

2 2uz
2!2H~um

2 2uz
2!. ~61!

The dispersion function is

W~ni!5
15gm

2

4um
5 ~ni

221!3 H 1
8 lnU11vm

12vm
U@~31vm

2 !~3ni
211!

2ni
2~3vm

2 11!~ni
213!#

1 1
4 umgm~ni

221!~3vm
2 ni

21vm
2 2ni

223!

1ni~ni
2vm

2 21!lnUnivm11

nivm21UJ
2 i

15pgm
2 ni~ni

2vm
2 21!

4um
5 ~ni

221!3 H~nivm21!. ~62!

The main difference from the hard bell case is that now th
is no singularity atni51/vm . The sign change ofW(ni)
occurs at someni51/v* and the explicit value ofv* is of no
particular significance here. For (11d2)cos2u,11d1,1/v

*
2

the sub-i mode has 11d1,ni
2,1/v

*
2 , as for the ‘‘hardbell’’

case, but now withv→0 at both ends of the range. There
substantial damping forni.1/vm , and the damping rate in
creases rapidly with increasingni . We conclude that the
sub-i mode is only of possible interest forni,1/vm .

The frequency of theA mode is now limited from above
through the existence of a maximum frequency. The m
ceases to exist forv.vmax, with vmax determined by the
behavior of the dispersion function, implyingv→vmax for
ni51/nm .

4. Illustrations

To make the above analysis more comprehensible we
lustrate the mode features for these three distributi
graphically in Figs. 1–5. For this purpose we choosegm
5100 andu580°. Since the parameters^g& and^g23& en-
ter the dispersion relations, it is of interest to compare th
for these three cases. Numerically we find^g&w550 and
^g23&w50.1 for the waterbag,̂ g&h537.5 and ^g23&h
50.16 for the hard bell, and̂g&s531.2 and̂ g23&s50.2 for
the soft bell distributions. As could be expected, the so
the distribution, the lower iŝg& and the higher iŝg23&. In
the three caseŝg23&^g&'0.5– 0.6.

The frequency-refractive index relation for the superlum
nousL-O mode~v/vp& as a function ofni! for all three
cases in the infinite magnetic field limit is shown in Fig.
This mode exists for 0,ni,cosu. The cutoff frequencyv0

5vpA^g23& is nearly the same for all three distribution
Figure 3 shows that theL-O wave becomes almost electro
-

-
a

e

e

il-
s

m

r

-

magnetic and transverse (E'k) already atv'2v0 .
Figure 4 shows the frequency-refractive index~solid

lines! and damping rate–refractive index~dash-dotted lines!
relations for the subluminousA mode in the rangeni.1 for
the same parameters as above. In the case of waterbag
tribution the plasma is not transparent for this mode forni

.1/vm . In the hard bell and soft bell cases the wave pro
gates, but the damping rate becomes comparable to or
larger than the wave frequency. Thus no weakly dampeA
wave exists forn.1/vm in any of the three cases. The wav
frequencies are not limited from above for the waterbag a
the hard bell distributions~although in the latter case th
logarithmic singularity does not allow us to show this in t
figure!. The dispersion relationv(k) for this mode in the
transparency range 1,ni,1/vm and the upper frequenc
limit for the soft bell distribution~heavy line! are seen in Fig.
5. The thin line corresponds to the two other cases, which
not distinguishable from the soft bell case in this low
frequency limit, but extend tov→`.

To summarize, theA mode exists only in the very narrow
range of refractive indices, (ni21)&1024, within which it
is well approximated by the dispersion relationv5k cosu. It
is a low-frequency wave and ceases to exist when its
quency becomes of the order of the Langmuir wave cu
frequencyvpA^g23&.

5. Relativistic thermal distribution

All the above distributions have a high energy cutoff a
have discontinuous first or higher derivatives. An example
a distribution which extends to arbitrarily high particle ene
gies and has all its derivatives continuous is the o
dimensional relativistic thermal~Jüttner-Synge! distribution

F̃05Ae2rg, ~63!

wherer5m/T is the inverse of the temperature in units
the rest mass, and where the normalization constantA is of
no particular interest. If one interprets the exponential fu
tion in Eq. ~63! as a smoothed form of cutoff of the distr
bution, then this is analogous to a soft bell distribution w
r51/gm or vm

2 5121/r. The mean valueŝ•••&, defined by
Eq. ~45!, may be evaluated in terms of known functions f
the distribution~63!, and compared with the results for oth
choices of distribution function. In the ultrarelativistic limi
relations between these averages are insensitive to the
of the cutoff of the distribution. One specific approxima
relation required below iŝg23&;^g&21, which applies to
within a factor of order unity. The exact value of this fact
depends on the details of the distribution.

The dispersion function~44! for the distribution~63! is
transcendental, and may be written in terms of various re
tivistic plasma dispersion functions. For example, it may
written

W~1/z!5Az2
]

]z
T~z,r!, ~64!

with z51/ni , where the relativistic plasma dispersion fun
tion is that introduced and discussed by@19#
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T~z,r!5E
21

1

dv
e2rg

v2z
. ~65!

@A result analogous to Eq.~64! was derived by@14# in terms
of different functions.# In the ultrarelativistic limit,r!1, one
has

]T~z,r!

]z
'2~z221!21 ~66!

for 12z@r2. An expansion given by @19# implies
]T(z,r)/]z'4r22 for u12zu!r2. The damping rate is de
termined by ImT(z,r)5pH(12z)e2rgr, with g r51/(1
2z2)1/25ni /(ni

221)1/2. This implies strong damping fo
ni

2*12r2, analogous toni
2*1/vm

2 for the hard bell and sof
bell distributions.

Comparison with the results for the other three distrib
tions considered above, withr;1/gm!1, suggests that the
dispersive function is not particularly sensitive to the cho
of distribution function for ni,1(z.1). For ni.1, the
function]T(z,r)/]z has a zero at 0,z21!1, analogous to
the zero ofW(ni) at ni51/v* for the other distributions.
However, unlike the other three cases, the function~64! has
no unusual properties corresponding toni;1/vm(ni

221
;r2), suggesting that the properties of the new sub-i mode
may be an artifact of the discontinuous derivatives of
hard bell and soft bell distributions. The strong damping
ni

2*11r2 is analogous to that forni
2*1/vm

2 for the hard bell
and soft bell distributions.

F. Wave properties for more general distributions

With the foregoing examples as guides, we now dr
some general conclusions concerning the properties of
wave modes for a wider class of distributions of highly re
tivistic particles. We consider distributions that are nonz
in a range2um2,uz,um1 , whereum6 are large and posi
tive, with um2Þum1 in general. We also assume thatF̃0
decreases monotonically with the increasingg, that is, there
are no beams.

For theA mode to exist and be of interest, one requir
that the frequency be below the maximum allowed f
quency, and that the damping be weak. In the ultrarelativi
case, F̃0 is approximately constant below a cutoff atg
5gm , and then normalization to unity impliesF̃0;1/gm .
Continuity of dF̃0 /duz at uz5um results in the existence o
a maximumA wave frequency that can be estimated by s
ting ni

251/vm
2 5111/gm

2 . Using Eq.~44! to estimateW(ni)
at this value, one findsW(ni);z^g&, with z a coefficient of
order unity that depends on the details of the distribut
function. It follows that the maximum allowed frequency f
A waves isvmax;vp(2/z^g&)1/2. Damping results from con
tinuity of F̃0 at uz5um and the damping is strong for 1
1d1.111/um

2 . To within a factor of order unity, this con
dition implies that the damping is strong forD*1/̂ g&3. It
follows thatA waves exist in one-dimensional plasmas on
when the magnetic field is sufficiently strong that this co
dition is satisfied.

We conclude that theA mode exists and has dispersio
relation approximated byvA5k cosu within limits set by
-

e

e
r

he
-
o

s
-
ic

t-

n

-

the maximum frequency,vmax;vp /^g&1/2, and by the onset
of strong damping, with weakly damped waves confined
the rangeD&1/̂ g&3. With the parameters used here, t
maximum frequency forA waves is;109 s21 near the pul-
sar surface, decreasing to&106 s21 aboveR;102R0 . The
strong damping implies thatA waves cannot exist atR
*103R0 , whereD*1/̂ g&3. Presence of an exponential ta
for g→`, as in the distribution~63!, does not change thes
semiquantitative conclusions.

For theL-O mode one hasni,1. For an ultrarelativistic
plasma the dispersion function may be approximated by

W~ni!5E
2`

` F̃0duz

g3~12nivz!
2

'^g23&F 11a

2~12ni!
2 1

12a

2~11ni!
2G , ~67!

wherea is the measure of the distribution asymmetry. In t
high phase velocity limitni!1 theL-O mode describes ob
lique Langmuir waves with approximate dispersion relatio

v l
252vp

2^g23&1k2. ~68!

As noted above, one has^g23&;^g&21 in an ultrarelativistic
plasma. With the parameters used here the cutoff freque
implied by Eq.~68! is vp^g

23&1/2;109 s21, near the pulsar
surface, and;106 s21 at R;102R0 .

In the high-frequency limit,n→1, Eq. ~67! in Eq. ~55!
describesO-mode waves with dispersion relation

vO
2 5k21

2vp
2^g23&

sin2 u
~112a cosu1cos2 u!, ~69!

where the conditionk*vp^g
23&1/2/sinu is assumed to be

satisfied.

G. Parallel propagation

The above expressions are valid for oblique propagat
when u@(D^g&)1/2, 1/̂ g&. In the opposite limit the waves
should be considered as effectively parallel. For comple
ness we summarize the properties of the waves propaga
parallel to the external magnetic field.

The t andA waves become circularly polarized and ha
the same dispersion relationv25k2vA

2(12Dl). The disper-
sion relation for the Langmuir wave in the limitk!v0 be-
comes

v25v0
21

4vp
2k^uzg

24&
v0

1
6vp

2k2^uz
2g25&

v0
. ~70!

The most significant change from the oblique case is that
parallel Langmuir mode crosses the linen51 and becomes
subluminous atv2'4vp

2^g&.

VI. DISCUSSION AND CONCLUSIONS

Our study of the low-frequency waves in a on
dimensional, relativistic pair plasma is motivated by th
possible application to pulsar radio emission. We descr
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TABLE I. Plasma parameters for different locations in a pulsar magnetosphere. The choice of parameters is discussed in Sec

Distance,R0 vp (s21) V (s21) vp(^g&)1/2 (s21) vp /(^g&)1/2 (s21) V/^g& (s21) vp
2^g&/V2

1 231010 231019 231011 23109 231017 10216

10 63108 231016 63109 63107 231014 10213

102 23107 231013 23108 23106 231011 10210

103 63105 231010 63106 63104 23108 1027

104 23104 23107 23105 23103 23105 1024
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these waves in the plasma rest frame. Observed frequen
are higher than those in the plasma rest frame by a fa
;gp , due to the Lorentz transformation, withgp5103 as-
sumed here. The basic parameters characterizing the
frequency waves in the pulsar plasma for different conditio
are given in Table I. Depending on the location in the pul
magnetosphere, slightly different sets of obliquely propag
ing modes exist.

It can be seen from the table that aboveR*103R0 the
radio range waves are no longer nonresonant, sincev
;V/^g&. On the other hand, the finite magnetic field corre
tions are negligible up toR;103R0 , and the infinite mag-
netic field approximation must be applied. The maximumA
wave frequency and minimum Langmuir wave frequen
which are of the same order,;vp /(^g&)1/2, are above the
radio range near the pulsar surface, but below it atR
*102R0 . The subluminousA wave and superluminousL-O
wave apparently complement each other to ensure the n
ber of allowed oblique modes at any given frequency equ
two. In the parallel propagation case there are always
complementary subluminous transverse waves~t and A
waves degenerate!, while the parallel Langmuir wave gradu
ally enters the radio range with increasing distance. AR
;102R0 the whole undamped part of the Langmuir wave
in the radio range.

There is observational evidence in favor of the location
the emission zone well inside the magnetosphere, aR
;1022RL , which corresponds to 10R0&R&102R0 . Taking
into account that this zone is only a small part of the m
netosphere, one finds that the emission zone should be
cated somewhere between 10R0 and 102R0 for a typical 1 s
n,
ies
or

w-
s
r
t-

-

,

m-
ls
o

f

-
lo-

pulsar, and its size is;R0 . In this case the only wave
which may participate in the local spectrum formation~for
example, due to nonlinear processes! are t andA waves, for
which the approximate dispersion relationsv t5k and vA
5k cosu are appropriate. The Langmuir-O mode has a dis-
persion relation approximated roughly byv l

25vp
2^g23&

1k2.
To summarize, we propose a method for studying wa

with frequencies much lower than the relativistic gyrofr
quency in relativistic pair plasmas. We derive the conc
general dispersion relations for these low-frequency wa
without making any additional simplifying assumptions. W
analyze the effects of gyrotropic terms on the waves in
radio frequency range and find them negligible except for
polarization in the parallel propagation case. Working in t
plasma rest frame we derive the dispersion relations in v
ous limits. Our representation differs from that of Ref.@13#
in that that our choice of the plasma rest frame avoids hav
the dispersion relations depend on Doppler shift effects. T
choice of frame allows us to concentrate on the effects
lated to the intrinsically relativistic distribution of electron
and positrons. Finally, using the pulsar plasma parame
typical for the polar cap cascade models, we perform mo
location mapping and establish which modes can particip
in the processes of the formation of the radio emission sp
trum for a typical pulsar.
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